The First Ru^{II}Pd^{II}₂S₃ Metallochelate Ring Formed on a [Ru(bpy)₂]²⁺ Core

Takashi Yoshimura,
* Atsushi Shinohara, Masakazu Hirotsu, † and Takumi Konno
*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 [†]Department of Material Science, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585

(Received June 7, 2005; CL-050733)

The 1:2 reaction of [RuCl₂(bpy)₂] (bpy = 2,2'-bipyridine) with [Pd(aet)₂] (aet = 2-aminoethanethiolate) led to the formation of [Ru(bpy)₂{Pd₂(aet)₃}{Pd(aet)₂}]³⁺ ([1]³⁺), which was converted into [Ru(bpy)₂{Pd₂(aet)₃}{Pd(aet)(2-aminoethanethiol)}]³⁺ ([1']³⁺) and [Ru(bpy)₂{Pd₂(aet)₃Cl}]²⁺ ([2]²⁺) having a six-membered RuPd₂S₃ metallochelate ring.

Construction of mixed-metal polynuclear complexes based on square planar $[M(amine)_2(thiolato)_2]$ -type $(M = Ni^{II})$ and Pd^{II}) units in combination with transition metal centers has attracted considerable interest, because of their diverse structural and chemical properties.¹⁻⁵ It has been recognized that [M^{II}(amine)₂(thiolato)₂]-type units act as a bridging or chelating bidentate-S,S metalloligand toward square-planar,¹ tetrahedral,^{1d,2} trigonal-planar,³ and linear⁴ metal centers to produce a variety of S-bridged polynuclear complexes. However, reports on the reactions of $[M(amine)_2(thiolato)_2]$ -type complexes with octahedral metal ions/complexes are relatively rare,⁵ and thus their ligating behavior toward octahedral metal centers has little been understood. As part of our continuing project on the creation of S-bridged polynuclear complexes showing a novel structural concept, we started to investigate the reactivity of $[M(aet)_2]$ toward a cis-[Ru(bpy)₂]²⁺ core, which is expected to bind with thiolato groups retaining its coordination geometry and to exhibit intriguing redox properties.⁶ Here, we report that the reaction of cis-[RuCl₂(bpy)₂] with [Pd(aet)₂] does not afford an expected S-bridged dinuclear complex, $[Ru(bpy)_2 \{Pd(aet)_2\}]^{2+}$, in which cis-[Pd(aet)₂] chelates to a Ru^{II} center, but produces the first example of S-bridged multinuclear complexes having a Ru^{II}Pd^{II}₂S₃ metallochelate ring (Scheme 1).

Treatment of *cis*-[RuCl₂(bpy)₂]·2H₂O⁷ (0.58 mmol) with $[Pd(aet)_2]^8$ (1.24 mmol) in acetone/water (6:1) under reflux gave a dark red solution, from which a dark red crystalline product ([1](ClO₄)₃) was isolated by the addition of an aqueous solution of NaClO₄ (69% yield).⁹ After several attempts, a small number of red crystals ([1'](ClO₄)₃) suitable for X-ray analysis were obtained on diffusing diethyl ether into an acetonitrile solution

Scheme 1.

Figure 1. A perspective view of one of the two independent complex cations $[1']^{3+}$ with the atomic labeling scheme.

of [1](ClO₄)₃.¹⁰ As shown in Figure 1, the complex cation $[\mathbf{1'}]^{3+}$ contains a *cis*- $[\operatorname{Ru}(\operatorname{bpy})_2]^{2+}$ core (av. Ru–N = 2.067(3) Å) that is bound by a S-bridged $[\operatorname{Pd}_2(\operatorname{aet})_3]^+$ dinuclear moiety through two thiolato S atoms (S1 and S3) to form a six-membered RuPd₂S₃ metallochelate ring with a chair-like conformation (av. Ru-S = 2.376(2) Å, Pd-S = 2.293(1) Å). To the $[Pd_2(aet)_3]^+$ moiety a pendant $[Pd(N)_2(S)_2]$ unit is attached through a S atom (S4) (Pd2–S4 = 2.370(4) Å), which completes a unique S-bridged Ru^{II}Pd^{II}₃ tetranuclear structure. Of note is the presence of an O atom on the nonbridging S atom (S5) in the $[Pd(N)_2(S)_2]$ unit (av. S–O = 1.48(1) Å). Thus, the complex cation $[1']^{3+}$ is formulated as $[Ru(bpy)_2 \{Pd_2(aet)_3\} \{Pd(aet)-$ (aese) $\{1^{3+} (aese = 2-aminoethanesulfenate)$. One may assume that the parental $[1]^{3+}$ is identical with $[1']^{3+}$. However, the FAB mass spectrum of [1](ClO₄)₃ gave a main signal at m/z =1313, the calculated molecular mass and the isotopic distribution of which match well with those for $\{[Ru(bpy)_2 \{Pd_2(aet)_3\}\}$ - ${Pd(aet)_2}(ClO_4)_2^+$, rather than those for ${[Ru(bpy)_2 \{Pd_2(aet)_3\}\{Pd(aet)(aese)\} (ClO_4)_2\}^+$ (m/z = 1329). On the basis of this result, together with the elemental and plasma emission analytical results, it is assigned that $[1]^{3+}$ has a S-bridged $Ru^{II}Pd^{II}_{3}$ tetranuclear structure in $[Ru(bpy)_{2} \{Pd_{2}(aet)_{3}\}$ - ${Pd(aet)_2}^{3+}$, which is converted into $[1']^{3+}$ by air oxidation of the nonbridging thiolato group of the pendant $[Pd(aet)_2]$ unit (Scheme 1). This assignment is supported by the ¹³C NMR spectrum of $[1](ClO_4)_3$ in CD₃CN, which showed 10 methylene carbon signals due to aet ligands, besides 20 aromatic carbon signals due to bpy ligands.9

When an aqueous solution of $[1](ClO_4)_3$ was chromatographed on an SP-Sephadex C-25 column, a dark red band was eluted with a 1.5 M aqueous solution of NaCl, although a considerable part of the compound was adsorbed on the top of column. From the dark red eluate, dark red crystals ($[2](ClO_4)_2$) were isolated by the addition of an aqueous solution of NaClO₄ (24% yield).¹¹ The elemental analysis of $[2](ClO_4)_2$ is consistent with the formula of $[Ru(bpy)_2][Pd_2(aet)_3]Cl(ClO_4)_2$, and its structure was established by X-ray analysis.¹² As shown in Figure 2, the complex cation $[2]^{2+}$ contains a *cis*- $[Ru(bpy)_2]^{2+}$

Figure 2. A perspective view of the complex cation $[2]^{2+}$ with the atomic labeling scheme.

core (av. Ru–N = 2.070(4) Å) that is chelated by a $[Pd_2(aet)_3]^+$ moiety to form a S-bridged Ru^{II}Pd^{II}₂ trinuclear structure (av. Ru–S = 2.380(2) Å, Pd–S = 2.281(1) Å). This trinuclear structure is essentially the same as that found in $[1']^{3+}$. However, in $[2]^{2+}$ a Cl⁻ ion is attached to a Pd atom (Pd2) of the $[Pd_2(aet)_3]^+$ moiety (Pd–Cl = 2.355(4) Å), instead of the pendant [Pd(aet)(aese)] unit in $[1']^{3+}$. This indicates that the pendant Pd^{II} unit in $[1]^{3+}$ is replaced by a Cl⁻ ion in the course of the column chromatographic procedure eluting with an aqueous NaCl solution (Scheme 1). Compatible with the crystal structure of $[2]^{2+}$, the ¹³C NMR spectrum of $[2](ClO_4)_2$ in CD₃CN showed 6 carbon signals due to aet ligands, besides 20 signals due to bpy ligands.¹¹ In addition, a main signal at m/z = 990corresponding to {[Ru(bpy)₂{Pd₂(aet)₃Cl}](ClO₄)}⁺ is observed in the FAB mass spectrum of [2](ClO₄)₂.

The electronic absorption spectra of $[1]^{3+}$ and $[2]^{2+}$ in CH₃CN are very similar to each other, giving a MLCT $(\text{Ru} \rightarrow \pi^*_{\text{bpy}})$ band at 462 and 459 nm, respectively.^{9,11} On the other hand, in the cyclic voltammetry in CH₃CN each of $[1]^{3+}$ and $[2]^{2+}$ displays a reversible redox couple at appreciably different potential $(+0.99 \text{ V for } [1]^{3+} \text{ and } +0.90 \text{ V for } [2]^{2+} \text{ vs Ag}/$ AgCl), which is assigned to the one-electron process due to the Ru^{III/II} center.¹³ Thus, it is seen that the Ru^{III/II} redox potential is tuned by the substituent group attached to the $Pd^{II}_{2}S_{3}$ chelating metalloligands. From the redox potentials, the ligand electrochemical parameter (Lever parameter), $E_{\rm L}({\rm L})$, which is used to predict the metal-centered redox potentials, was estimated to be 0.07 and 0.03 V for the $Pd^{II}_{2}S_{3}$ metalloligands in $[1]^{3+}$ and $[2]^{2+}$, respectively.¹⁴ These $E_{\rm L}({\rm L})$ values are just between those for thiolate-type (-0.33--0.56 V) and thioether-type (0.31-0.38 V) ligands,¹⁴ reflecting the electron-donating ability of sulfur donor atoms.

In summary, it was found in this study that the reaction of $[RuCl_2(bpy)_2]$ with $[Pd(aet)_2]$ causes the partial dissociation of aet ligand from $[Pd(aet)_2]$ to give a novel S-bridged $Ru^{II}Pd^{II}_3$ tetranuclear structure in $[1]^{3+}$. The pendant $[Pd(aet)_2]$ unit in $[1]^{3+}$ was found to be air-oxidized to produce a sulfenato derivative $([1']^{3+})$ and also replaced by a Cl⁻ ion to afford a S-bridge d $Ru^{II}Pd^{II}_2$ trinuclear structure in $[2]^{2+}$.¹⁵ Interestingly, these complexes possess a $Ru^{II}Pd^{II}_2S_3$ metallochelate ring on the $[Ru(bpy)_2]^{2+}$ core, which has never been found in the previous literatures. The construction of different S-bridged metallochelate rings on the $[Ru(bpy)_2]^{2+}$ core, along with the replacement of the Cl⁻ ion in $[2]^{2+}$ by other ligands, are currently underway.

References and Notes

 a) M. G. B. Drew, D. A. Rice, and K. M. Richards, *J. Chem. Soc., Dalton Trans.*, **1980**, 2075. b) T. Konno, K. Yonenobu, J. Hidaka, and K. Okamoto, *Inorg. Chem.*, **33**, 861 (1994). c) G. Musie, P. J. Farmer, T. Tuntulani, J. H. Reibenspies, and M. Y. Darensbourg, *Inorg. Chem.*, **35**, 2176 (1996). d) P. V. Rao, S. Bhaduri, J. Jiang, and R. H. Holm, *Inorg. Chem.*, **43**, 5833 (2004).

- 2 a) R. Krishnan, J. K. Voo, C. G. Riordan, L. Zahkarov, and A. L. Rheingold, *J. Am. Chem. Soc.*, **125**, 4422 (2003). b) H.-W. Xu, Z.-N. Chen, S. Ishizaka, N. Kitamura, and J.-G. Wu, *Chem. Commun.*, **2002**, 1934.
- 3 T. Konno, M. Usami, M. Hirotsu, T. Yoshimura, and T. Kawamoto, *Chem. Commun.*, 2004, 2296.
- 4 P. J. M. W. L. Birker, and G. C. Verschoor, *Inorg. Chem.*, **21**, 990 (1982).
- 5 a) D. X. Kang, M. Poor, E. L. Blinn, and P. M. Treichel, *Inorg. Chim. Acta*, 168, 209 (1990). b) M. Mason, D. X. Kang, I. Cihon, A. Kintz, E. L. Blinn, M. Tegen, and P. M. Treichel, *J. Chem. Soc., Dalton Trans.*, 1987, 2599. c) K. Okamoto, O. Yatabe, K. Fujisawa, and Y. Yamada, *Monogr. Ser. Int. Conf. Coord. Chem.*, 4, 109 (1999).
- 6 a) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. von Zelewsky, *Coord. Chem. Rev.*, 84, 85 (1988). b) M. J. Root, B. P. Sullivan, T. J. Meyer, and E. Deutsch, *Inorg. Chem.*, 24, 2731 (1985). c) K. Tanaka, M. Morimoto, and T. Tanaka, *Inorg. Chim. Acta*, 56, L61 (1981). d) M. A. Greaney, C. L. Coyle, M. A. Harmer, A. Jordan, and E. I. Stiefel, *Inorg. Chem.*, 28, 912 (1989).
- 7 P. A. Lay, A. M. Sargeson, and H. Taube, *Inorg. Synth.*, 24, 291 (1986).
- 8 D. C. Jicha and D. H. Busch, Inorg. Chem., 1, 872 (1962).
- 9 Anal. Calcd for [1](ClO₄)₃: C, 25.52; H, 3.29; N, 8.93%. Found: C, 25.44; H, 3.59; N, 8.92%. UV–vis spectrum in CH₃CN [λ_{max} /nm (ε /mol⁻¹ dm³ cm⁻¹)]: 462 (11200), 346 (10400), 292 (42000), 237 (47800). ¹³C NMR in CD₃CN (δ from SiMe₄); 30.12, 30.61, 34.21, 36.44, 36.65, 49.68, 49.88, 50.00, 50.76, 52.78, 124.41, 125.07, 125.33, 125.39, 127.76, 127.80, 128.56, 137.68, 137.88, 138.27, 138.31, 150.98, 151.62, 153.97, 154.04, 157.32, 157.75, 158.36, 158.60.
- 10 Crystal Data for [1'](ClO₄)₃•CH₃CN•1/2H₂O: fw 2955.47, triclinic, PĪ, a = 17.984(7)Å, b = 25.060(8)Å, c = 11.776(3)Å, $\alpha = 98.01(2)^{\circ}$, $\beta = 104.86(3)^{\circ}$, $\gamma = 91.12(4)^{\circ}$, V = 5071(2)Å³, Z = 2, $D_{calcd} = 1.935$ g cm⁻³, R1 (wR2) = 0.053 (0.177) for 7966 reflections with $I > 2.0\sigma(I)$. Two crystallographycally independent, yet nearly identical complex cations are present in the crystal.
- 11 Anal. Calcd for [2](ClO₄)₂·H₂O: C, 28.21; H, 3.28; N, 8.86%. Found: C, 28.02; H, 3.39; N, 8.76%. UV–vis spectrum in CH₃CN [λ_{max} /nm (ε /mol⁻¹ dm³ cm⁻¹)]: 459 (10600), 344 (8900), 292 (40000). ¹³CNMR in CD₃CN (δ from TMS); 30.13, 34.17, 35.48, 48.69, 49.30, 49.69, 123.80, 123.88, 124.30, 124.73, 127.18, 127.21, 127.45, 127.90, 137.18, 137.27, 137.74, 150.65, 151.06, 153.41, 154.15, 156.72, 157.35, 157.65, 158.02.
- 12 Crystal Data for [2](ClO₄)₂·2H₂O: fw 1125.04, triclinic, PI, a = 13.710(4) Å, b = 14.199(1) Å, c = 11.059(2) Å, $\alpha = 93.93(1)^{\circ}$, $\beta = 108.99(2)^{\circ}$, $\gamma = 84.12(2)^{\circ}$, V = 2023.6(7) Å³, Z = 2, $D_{calcd} = 1.846$ g cm⁻³, R1 (wR2) = 0.058 (0.196) for 4368 reflections with $I > 2.0\sigma(I)$.
- 13 No other redox couple was observed in the positive potential region up to +1.2 V for each of $[1]^{3+}$ and $[2]^{2+}$.
- 14 a) A. B. P. Lever, in "Comprehensive Coordination Chemistry II," (2004), Vol. 2, p 251. b) A. B. P. Lever, *Inorg. Chem.*, 29, 1271 (1990).
- 15 The reaction of [1]³⁺ with hydrogen peroxide in CH₃CN gave its sulfinato derivative, [Ru(bpy)₂{Pd₂(aet)₃}{Pd(aet)(aesi)}]³⁺ (aesi = NH₂CH₂CH₂SO₂⁻), which was characterized by the elemental analysis, FAB mass, UV-vis, IR, and ¹H NMR spectra. Anal. Calcd for [Ru(bpy)₂{Pd₂(aet)₃}{Pd(aet)(aesi)}](ClO₄)₃• H₂O: C, 24.60; H, 3.31; N, 8.62%. Found: C, 24.50; H, 3.40; N, 8.48%. FAB-mass: m/z = 1345 for {[Ru(bpy)₂{Pd₂(aet)₃}-{Pd(aet)(aesi)}](ClO₄)₂⁺. UV-vis spectrum in CH₃CN [Å_{max}/nm (ε/mol⁻¹ dm³ cm⁻¹)]: 460 (10200), 349 (11200), 292 (46700), 240 (44400). The figures of its UV-vis, IR, and ¹H NMR spectra are shown in supporting information, together with the spectra of [1]³⁺ and [2]²⁺.